Vakbond

Hoofdrolspelers in de Twitterdiscussie over de FNV-voorzitter

Nederlands - Ik heb de hoofdrolspelers in de twitterdiscussie over de verkiezing van de nieuwe FNV-voorzitter in beeld gebracht. Omdat de grafiek niet in deze kolom past, heb ik er een aparte pagina voor gemaakt. Werkt het best met Chrome.

English - I’ve visualised the key players in the debate on Twitter on the election of the new president of the Dutch trade union confederation FNV. Since it doesn’t fit in this column, I’ve created a separate page. Best viewed in Chrome.

Wie wordt volgens Twitter de nieuwe FNV-voorzitter

Aantal tweets waarin kandidaten worden genoemd


Volgens Amerikaans onderzoek kan je de uitkomst van verkiezingen voorspellen door simpelweg te tellen hoe vaak de namen van de kandidaten worden genoemd op Twitter. Zou je op deze manier ook kunnen voorspellen wie de nieuwe voorzitter wordt van de FNV?

Ik heb vanaf afgelopen vrijdag de tweets verzameld waarin de term ‘FNV’ voorkomt, tot nog toe zijn dat er ruim 2.500. In deze tweets wordt Ton Heerts 204 keer genoemd en Corrie van Brenk 146 keer (tweets waarin ze allebei worden genoemd laat ik buiten beschouwing). Kortom, als Twitter een goede graadmeter is (daarover valt natuurlijk te discussiëren) dan wordt de strijd spannender dan het aanvankelijk misschien leek.

De grafiek hierboven laat de resultaten zien voor de dagen waarvoor volledige gegevens beschikbaar zijn. Er was vanaf zaterdag aandacht voor Van Brenk (vanwege deze factcheck). Op zondag werd Heerts genoemd omdat hij te gast was in het tv-programma van Eva Jinek. Op 1 mei werden de kandidaten officieel bekendgemaakt en gingen ze met elkaar in debat.

Update - Bijgewerkt tot en met 13 mei, de laatste dag waarop gestemd kon worden. In totaal is Van Brenk 497 keer genoemd en Heerts 631. Inmiddels is bekend dat Heerts de verkiezing heeft gewonnen (uiteraard is daarmee nog niet gezegd dat de methode hout snijdt: om daar iets zinnigs over te kunnen zeggen zou je een flink aantal voorspellingen moeten kunnen beoordelen).
In de grafiek zijn onder meer de volgende invloeden zichtbaar: Factcheck bevestigt uitspraak Van Brenk (vanaf 27 april); Heerts bij Eva Jinek (28 april); officiële bekendmaking kandidaten (1 mei); debat bij Buitenhof (5 mei); belastingaffaire waarover Van Brenk’s Abvakabo FNV al aan de bel had getrokken (6 mei); interview Van Brenk op Nu.nl (9 mei); radio-optreden Van Brenk (10 mei); Heerts bij presentatie Techniekpact (13 mei); peiling EenVandaag voorspelt dat Heerts wint (13 mei).
De grafiek is mogelijk niet zichtbaar in oude versies van Internet Explorer.

Methode

Tweets heb ik verzameld via de Twitter Streaming API, op de manier die hier wordt beschreven. Daarbij heb ik gefilterd op de zoekterm ‘fnv’. Ik heb de gegevens met Python bewerkt en met R geanalyseerd (de code staat op Github). De grafiek is gemaakt met D3.js.
Ik heb nog gekeken naar hoe invloedrijk de twitteraars zijn (hoeveel volgers; hoe vaak opgenomen in lijsten) en naar hun achtergrond (noemen ze in hun profiel bijvoorbeeld de FNV). Het belangrijkste wat dit opleverde is dat twitteraars die Van Brenk noemen vaker ‘abva’ of ‘akf’ in hun profiel noemen - niet verassend aangezien Van Brenk momenteel voorzitter is van Abvakabo FNV.
Het Amerikaanse onderzoek naar Twitter als voorspeller van verkiezingsuitslagen is uitgevoerd door DiGrazia en anderen en is hier te vinden. Enkele opmerkingen over hun onderzoek:

  • Het klopt natuurlijk dat twitteraars maar een klein deel van de bevolking vormen en dat ze niet representatief zijn voor de hele bevolking. Waarschijnlijk wordt het beeld op Twitter vooral bepaald door een kleine, actieve incrowd. Ook klopt het dat een tweet waarin een kandidaat wordt genoemd niet altijd positief is; soms wordt er juist kritiek geuit. Ondanks dit alles bleek uit het onderzoek van DiGrazia e.a. dat het aantal keer dat een kandidaat op Twitter wordt genoemd een consistente voorspeller vormt van verkiezingsuitslagen. Wellicht vormt het aantal vermeldingen op twitter een indicator voor iets anders, bijvoorbeeld media-aandacht of hoe actief er campagne wordt gevoerd voor een kandidaat.
  • De methode biedt uiteraard geen zekerheid over wie er wint. Het kan voorkomen dat een kandidaat bijna 100% van de twittervermeldingen krijgt en toch verliest (althans dat suggereren de scatterplots die DiGrazia e.a. laten zien).
  • Het is onduidelijk in hoeverre de conclusies van het Amerikaanse onderzoek naar andere situaties kunnen worden gegeneraliseerd. Het is daarom wel een beetje een gok om met deze methode te voorspellen wie de nieuwe voorzitter van de FNV wordt.

Can Twitter predict the new Dutch trade union president

Number of tweets in which candidates are mentioned


According to an American study, you can predict the outcome of elections by simply counting how often the names of the candidates are mentioned on Twitter. Members of the Dutch union confederation FNV are currently voting for their new president (it has been claimed this is the first time in the world union members get to directly elect their confederation president). Would it be possible to predict who will be the new FNV president using Twitter?

Since last Friday, I’ve been collecting the tweets containing the term ‘FNV’; so far, there are over 2,500. In those tweets, the incumbent Ton Heerts is mentioned 204 times, whereas his challenger Corrie van Brenk is mentioned 146 times. In short, if Twitter is a good predictor (which of course is a matter for debate), the contest is tighter than one might have expected.

The graph above shows the results for the days for which complete data is available. On Saturday, Van Brenk got some attention because something she had said had been fact checked (and found to be correct). On Sunday, Heerts was mentioned because he appeared on a TV show hosted by Eva Jinek. On 1 May, it was officially announced who the candidates are and they had a debate.

Update - Updated to include 13 May, the final voting day. In sum, Van Brenk was mentioned 497 times and Heerts 631. It has since been announced that Heerts has won the election (of course, this doesn’t necessarily mean that the method is sound; in order to make such claims one would need to evaluate a fair amount of predictions).
Influences reflected in the graph include: Factcheck confirms Van Brenk statement (27 April); Heerts in Eva Jinek TV show (28 April); candidates officially announced (1 May); debate in Buitenhof TV show (5 May); problems at tax authorities that Van Brenk’s Abvakabo FNV had warned about (6 May); Van Brenk interview at Nu.nl (9 May); Van Brenk in radio show (10 May); Heerts at presentation of initiative to train technical staff (13 May); EenVandaag TV show poll predicts Heerts will win (13 May).
The graph may not be visible in older versions of Internet Explorer.

Method

I collected tweets using the Twitter Streaming API (the ‘firehose’), in the way described here. I prepared the data using Python and analysed it using R (find the code on Github). The graph was created with D3.js.
I looked into how influential twitterers are (how many followers, how often listed) and into their backgrounds (e.g., do they mention ‘fnv’ in their profile). The most important finding is that twitterers who mention Van Brenk, more often mention ‘abva’ or ‘akf’ in their profile - not surprising since Van Brenk is currently president of Abvakabo FNV, the public sector union affiliated to the FNV.
The American study on Twitter as a predictor of election outcomes was done by DiGrazia c.s. and can be found here. Some remarks on their study:

  • Yes, twitterers are only a small part of the population and no, they’re not representative of the entire population. Likely, Twitter is dominated by a small, active incrowd. It’s also correct that tweets mentioning a candidate need not endorse them; they may as well be critical. Despite all this, DiGrazia c.s. found that mentions on Twitter consistently predict election outcomes. Perhaps they are an indicator of something else - e.g. media attention or how actively people are campaigning for a candidate.
  • Of course, this method doesn’t provide any certainty on who will win. It’s possible for a candidate to get almost 100% of the tweet share and still lose (at least, that’s what the scatterplots of DiGrazia c.s. suggest).
  • It’s unclear to what extent the conclusions of the American study can be generalised to other situations. It’s therefore a bit of a gamble to use this method to predict who will be the next president of the FNV.

‘Trade unions should take a much tougher stance’

Dutch trade unions have a reputation for constructive dialogue, but that’s not necessarily what people expect of them. In the LISS Political Values study, some 6,000 panel members have been asked a number of times whether they agree with the statement ‘Trade unions should take a much tougher political stance, if they wish to promote the workers’ interests’. In the latest edition of the study, those who agree with this statement outnumber those who disagree by 2.6 to 1. This support for tougher unions holds for most subgroups (but not the self-employed and people earning more than 4,500 euros per month).

Support for tougher unions over time

Percentage of respondents who agree or disagree with the statement ‘Trade unions should take a much tougher political stance, if they wish to promote the workers’ interests’. Graph may not work with older versions of Internet Explorer. Source LISS, graph dirkmjk.


Support for tougher unions, by group

Select:

Values higher than 1 mean that within that group, those in favour of tougher unions outnumber those who disagree. For example, among people with paid employment, the number of respondents in favour of tougher unions is 3.5 times as high as the number who disagree. Hover mouse over bar to see percentages. Graph may not work with older versions of Internet Explorer. Source LISS, results for December 2011, graph dirkmjk.

Nederland kampioen laag loon voor jongeren en flex


Selecteer groep:

Nieuwe cijfers van Eurostat geven een beeld van een specifieke vorm van ongelijkheid, namelijk het percentage werknemers met een laag loon (hier opgevat als tweederde van het mediane bruto uurloon). Volgens deze cijfers is de ongelijkheid in Nederland kleiner dan in Duitsland, Groot-Brittannië en Ierland, maar groter dan in veel andere West-Europese landen.

Jongeren en flexwerkers hebben veel vaker laagbetaald werk dan andere werknemers. Opvallend is de ‘koppositie’ van Nederland: nergens in Europa hebben zoveel jongeren en flexwerkers een laag uurloon als hier. (Zie ook deze brandbrief over pulpbanen en dit artikel over de lage jeugdlonen in Nederland.)

De grafiek werkt mogelijk niet in oudere versies van internet explorer. Gegevens: jongeren, flex (definitie flex).

UPDATE 31 december - Het ANP maakt nu ook melding van de cijfers van Eurostat.

Summary: 

Low-paid work, here defined as below 2/3 of median gross hourly earnings, as a share of the total workforce (Alle werknemers); under-30s (Jongeren) and workers with fixed-term contracts (Tijdelijk contract). Data from Eurostat (youth, flex).

Pages