Is tourist dispersion working? An analysis of Lonely Planet maps

Discussion

For more than fifteen years, Amsterdam has been trying to convince tourists to visit areas outside the city centre. There is a concern that the inner city is approaching the limit of how many tourists it can handle.

To explore the effect of these policies, I analysed changes in the maps in Lonely Planet guides. Over the past years, sights have been added in areas outside of the inner city - mostly areas that had already been affected by gentrification. Still, the large majority of sights are still in the traditional tourist areas, in the city centre and some parts of the Zuid district.

It appears that the effect of tourist dispersion policies is modest at best - and not nearly enough to compensate for the growth of tourism. Reducing the impact of tourism may well require a different approach - for example targeting hotel capacity and low-cost flights to Schiphol Airport.

Dispersion policies

In its coalition agreement, the new city government said that the positive aspects of tourism are increasingly overshadowed by its negative effects, putting the liveability of some neighbourhoods at risk. One of the ways to deal with this is spreading tourists over the city (and the surrounding region). Amsterdam is to be primarily a place where people live and do business, and only in the second place a tourist destination.

The idea to disperse tourists is not new. In 2016, Amsterdam launched a campaign to promote areas outside the inner city. Interestingly, the campaign caused a bit of a controversy when politicians noticed the Nieuw-West district had been left out of a promotional map. Amsterdam Marketing responded that ‘in our professional opinion’, the district is currently ‘less suitable to be offered as a primary alternative to the city centre’. They argued that neighbourhoods must first be embraced by locals, which suggests that city marketing follows gentrification.

In 2009, Amsterdam planned to promote the eastern parts of the city as ‘the new (2nd) Museum Quarter’; the Northern IJ Waterfront as ‘Creative City’, the Westerpark as a variation on Berlin’s ‘Kulturbrauerei’; the Eastern Harbour Area as Docklands; de Pijp as ‘Quartier Latin’ and Oud-West as ‘Notting Hill’.

And as early as 2001, the tourism board warned that the inner city had almost reached the limit of how many tourists it can handle. «But where should they go? To IJburg for architecture; fun shopping at the Arena Boulevard in Zuidoost and visit the former GVB tram depot in Oud-West.»

A common denominator of the campaigns is that they target repeat visitors. As the tourism board explained in 2001, «we don’t want to send first-time foreign visitors to the outskirts».

Lonely Planet maps

To get an idea of the impact of these policies, I analysed changes in the sights shown on maps in Lonely Planet guides (for caveats, see Method below). If tourists turn to new parts of the city, you’d expect these areas to show up on those maps. Further, in 2009, the tourism board started seinding information about sights outside the city centre to publishers of travel guides. «Inclusion in the guides is not guaranteed, but this often happens.»

2006 is a bit of an outlier. A number of sights outside of the city centre were added, only to disappear again in the next edition (see below, Sights that were dropped). If you zoom in on specific neighbourhoods, you’ll notice more changes. For example:

  • A number of sights in Oost were added in 2012: Oosterpark (including De Schreeuw, Slavery Memorial and Spreeksteen), Dappermarkt and Frankendael;
  • In 2018, a number of sights in Noord were added, including some at the former NDSM Wharf, EYE Film Museum and Nieuwendammerdijk.

The table below shows the percentage of sights per district:

District 2000 2006 2012 2016 2018
Stadsdeel Centrum 84 74 78 78 75
Stadsdeel Zuid 10 12 11 11 10
Stadsdeel Oost 1 3 6 5 6
Stadsdeel Noord 2 1 0 0 5
Stadsdeel West 3 5 4 5 4
Stadsdeel Nieuw-West 0 1 0 0 0
Stadsdeel Zuidoost 0 1 0 0 0
Wijk 00 Amstelveen 0 3 0 0 0

There has been an increase in especially Oost and Noord, but the large majority of sights are still in Centrum and in Zuid (which includes the Museumplein).

Sights that were dropped

In each edition, new sights are added and others are dropped. The latter category includes sights that don’t exist anymore, such as the Netherlands Media Art Centre, the Vakbondsmuseum (trade union museum) and temporary locations of the Stedelijk Museum. Other sights apparently fell out of grace with the authors.

The authors of the various editions have their own preferences and interests. For example, Andrew Bender, author of the 2006 edition, appears to be a bit of a health enthousiast. He added many sports facilities and fitness centres, which explains why his edition had more sights outside the city centre. Most of these were dropped in the next edition. In 2012, Karla Zimmerman and Sarah Chandler added many hofjes (~almshouses). Again, most of them didn’t make the next edition.

Method

I used the following editions of the Lonely Planet Amsterdam guide:

2000: Rob van Driesum, Nikki Hall
2006: Andrew Bender
2012: Karla Zimmerman, Sarah Chandler
2016: Catherine Le Nevez, Karla Zimmerman
2018: Catherine Le Nevez, Abigail Blasi

I analysed sights in the legends of the maps at the end of the guides. The maps also include categories like eating, drinking, sleeping and entertainment. I focused on sights, reckoning that this category would likely present less problems when you want to geocode information from old maps. Note that the classification of especially the 2000 edition is somewhat different from later editions.

It’s possible that errors occured in geocoding or in copying data from the guides. If you spot any errors, please let me know.

Obviously, Lonely Planet maps are not a perfect measure of tourism dispersion. On the other hand, if there had been major shifts in the areas tourists visit, it seems rather unlikely they wouldn’t be reflected in the sights Lonely Planet shows on its maps.

Tags: 

Circular Metro and Tram map of Amsterdam

This weekend, Amsterdam’s new North-South metro line will open. To celebrate the occasion, Straatkrant Z! offers a free copy of Eric Hammink’s beautiful circular Metro and Tram map of Amsterdam. Z! is a newspaper sold by homeless people.

Seven years ago, Hammink designed the first version of his map, modelled after the pattern of the city’s canals. At the time, there was talk about Amsterdam’s public transport company GVB adopting the map, but apparently they haven’t. A missed opportunity.

The map is also used in Hammink’s iPhone route planner app.

Tags: 

Converting Election Markup Language (EML) to csv

Note that the map above isn’t really a good illustration here because I used a different data source to create it.

Getting results of Dutch elections at the municipality level can be complicated, but what if you want to dig a little deeper and look at results per polling station? Or even per candidate, per polling station? For elections since 2009, that information is available from the data portal of the Dutch government.

Challenges

The data is in Election Markup Language, an international standard for election data. I didn’t know that format and processing the data posed a bit of a challenge. I couldn’t find a simple explanation of the data structure, and the Electoral Board states that it doesn’t provide support on the format.

For example, how do you connect a candidate ID to their name and other details? I think you need to identify the Kieskring (district) by the contest name of the results file. Then, find the candidate list for the Kieskring and look up the candidate’s details using their candidate ID and affiliation. But with municipal elections, you have to look up candidates in the city’s candidate list (which doesn’t seem to have a contest name).

Practical tips

If you plan to use the data, here are some practical tips:

  • Keep in mind that locations and names of polling stations may change between elections.
  • If you want to geocode the polling stations, the easiest way is to use the postcode, which is often added to the polling station name (only for recent elections). If the postcode is not available or if you need a more precise location, the lists of polling station names and locations provided by Open State (2017, 2018) may be of use. Use fuzzy matching to match on polling station name, or perhaps you could also match on postcode if available. Of course, such an approach is not entirely error-free.

Further, note that the data for the 2017 Lower House election is only available in EML format for some of the municipalities. I guess this has something to do with the fact that prior to the election, vulnerabilities had been discovered in software to count the votes, so they had to count the votes manually.

Python script

Here’s a Python script that converts EML files to csv. See caveats there.

UPDATE 23 February 2019 - improved version of the script here.

Tags: 

The orientation of Amsterdam’s streets

Eight days from now, Amsterdam will have a new metro line traversing the city from north to south. But what about the orientation of the city’s streets?

Geoff Boeing - who created a Python package for analysing street networks using data from OpenStreetMap - just published a series of polar histograms of American and ‘world’ cities. Amsterdam isn’t among them, but Boeing made his code available, so I used that to create charts for the largest cities in the Netherlands.

While the pattern isn’t nearly as monotonous as in most American cities, I’m still surprised how many streets in Amsterdam run from north to south or from east to west. The Hague has a strong diagonal orientation; Rotterdam doesn’t seem to have a dominant orientation and Utrecht is a bit in between.

With Boeing’s code, you can also do the analysis specifically for roads that are accessible to cyclists, but for Amsterdam that doesn’t make much difference since most roads are.

Discussion

15 July 2018 - There was some really interesting discussion on Twitter in response to my post from last Friday (I use Twitter names to refer to people; most sources are in Dutch).

Curved streets

Both Sanne and Egon Willighagen asked how the chart treats curved streets. I have to admit I hadn’t checked, but the docstring of the add_ege_bearings function explains that it calculates the compass bearing of edges from origin node to destination node, so that implies that streets are treated as if they were straight lines.

Is that a problem? Probably not for many US cities, for they seem to have few curved streets. As for Amsterdam: most people’s mental image of the city is probably dominated by the curved canals of the city centre. However, many neighbourhoods consist of grids of more or less straight streets. So perhaps curved streets have little impact on the analysis after all.

Length versus surface

Hans Wisbrun argues that the chart type is nice, but also deceptive. The number of streets is represented by the length of the wedges, but one may intuitively look at the surface, which increases with the square of the length. In a post from 2013 (based on a tip from Ionica Smeets), he used a chart by Florence Nightingale to discuss the problem.

Rogier Brussee agrees, but argues that a polar chart is still the right choice here, because what you want to show is the angle of streets.

In a more general sense, I think the charts are an exploratory tool that’ll give you an idea how street patterns differ between cities. If you really want to understand what the wedges represent, you’ll have to look at a map.

Beach ridges

That’s what Stephan Okhuijsen did. He noted that the chart for The Hague appears to reflect the orientation of the city’s coastline. Not quite, Christiaan Jacobs replied. The orientation of the city’s streets is not determined by the current coastline, but by the original beach ridges.

I don’t know much about geography (or about The Hague for that matter), but a bit of googling suggests Jacobs is right. See for example this map (from this detailed analysis of one of The Hague’s streets), with the old sand dunes shown in dark yellow.

See also links to previous similar work in this post by Nathan Yau (FlowingData).

Gentrification mapped

The map makers of the City of Amsterdam have created a map that shows the Neighbourhood Street Quota or BSQ. The BSQ plays a key role in a highly controversial reform that is eroding the city’s social ground lease policy, but that’s not the topic of this article. For now, I’m interested in the BSQ as an indicator of land value.

As the city government puts it, «the high BSQs are found at popular locations in the city and the low BSQs at less popular locations in the city» (for details see Method, below). Unsurprisingly, the centrally located Centrum and Zuid districts have high BSQs and the peripheral areas have low BSQs.

More interesting is how the BSQ has changed. The city government has provided data for thousands of streets or street segments, for 2014 and 2016. Of course, this is a short time period and the patterns may or may not reflect longer-term developments.

The chart below shows the distribution of BSQs for flats (as opposed to single-family dwellings) for 2014 and 2016.

The peak has moved to the right, as the median value has risen from 28 to 38. For political reasons, the BSQ can never be lower than 5 or higher than 49, which explains the large number of streets with a value of 5 or 49. This implies that rises in BSQ don’t fully reflect how much land values have risen.

The map below shows how much BSQs for flats have risen in different parts of Amsterdam. I omitted streets with low or high BSQs where substantial changes in BSQ may have been hidden by the upper and lower limits. At the high end, this applies to the Canal Belt and much of the Zuid District. At the lower end, this applies to many peripheral areas including almost the entire Zuidoost District.

Red streets indicate an increase of the BSQ by more than a half; orange streets an increase by less than a half and the rare green streets a decrease of the BSQ. There are some red areas outside the ring road: mainly the IJburg expansion to the east; some parts of Nieuw-West; and Buitenveldert. Buitenveldert is a neighbourhood south of the Zuidas business district with a growing number expats and students among its residents.

Within the ring road, BSQs are rising in areas that are often associated with gentrification, such as the Kolenkit in West, the Vogelbuurt in Noord and the Indische Buurt in Oost. Perhaps more surprising is Betondorp, a low-income area with many older residents, described in 2015 as «one of the few neighbourhoods in Amsterdam not yet affected by the advance of gentrification». If the BSQ is an indication, that may be about to change.

Method

A list (pdf) of BSQs for 2016 and 2014 was recently sent to the city council. The BSQs are referred to as 2018 and 2017, but are based on data from 2016 and 2014 respectively (or to be more precise: the ‘2017 BSQ’ uses data from 2015 or 2014, whichever is lowest). The map created by the City of Amsterdam uses the ‘2017 BSQ’.

For each house, the municipality calculates an individual land quota using the formula: land value / (land value + theoretical cost of rebuilding the house). The land value is obtained by subtracting the rebuilding cost from the total value of the house (WOZ).

Subsequently, BSQs are calculated as the average land quota per street (or street segment if a street traverses multiple neighbourhoods). This is done separately for single-family dwellings and flats.

The interpretation of the BSQ is a bit tricky: one should expect higher land values to be reflected in higher BSQs, but the exact relationship will depend on the value of the building and whether that also responds to changes in land value (for example, because more expensive materials are used).

In my analysis, I only used BSQs for flats, and only the streets or street segments for which a BSQ is available for both 2014 and 2016 (thus excluding new urban expansions).

For the map, I also excluded streets where an increase of the BSQ by less than half may be hidden by the lower or upper limit of the BSQ: those with a 2014 value of 5 and a 2016 value of less than 8; and those with a 2014 value above 32 and a 2016 value of 49.

In creating the map I also ignored long streets that traverse multiple neighbourhoods and that therefore have been separated into multiple segments. Constructing street segments from line geometries representing the entire street seemed like a lot of work (perhaps there’s a simple way to do this, but I couldn’t find it).

I used Tabula to extract data from the original pdf; this Python script to process the data, create a csv for the chart and create a shapefile for the map; D3.js for the chart and Qgis to create the map (using Open Street Map map data and Stamen Toner Lite for the background).

Tags: 

Pages